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The Principal Discriminant Method (PDM) of prediction employs a novel combination of principal
component analysis and statistical discriminant analysis. Discriminant analysis is based on the construc-
tion of discrete category subsets of predictor values in a multidimensional predictor space. A category
subset contains those predictor values which give rise to a predictand (or observation) in that particular
category. A new predictor value is then assigned to a particular category (i.e., a forecast is made) through
the use of probability distribution functions which have been fitted to the category subsets. The PDM
uses principal component analysis to define the multidimensional probability distribution functions
associated with the category subsets. Because of its underlying discriminant nature the PDM is alsoapplicable to problems in data classification. The PDM is applied to prediction problems using both
artificial and actual data sets. When applied to artificial data the PDM shows forecast skills which are
comparable to those of standard forecasi techniques, such as linear regression and classical discriminant
analysis. -,When applied to actual data 71 a forecast of the 1982-1983 El Nifio, the PDM performed
poorly. Hiwever, in forecasting winter ai temperatures over North America, the PDM proved superior
to other fotrecast techniques, after suitabl, filtering or smoothing the raw data in order to improve the
signal-to-nise ratio. It is expected that ti. PDM will show its greatest advantage over other forecast
techniques vhen the relation between predi. tors and predictand is nonlinear.

1. INTRODUCTnON probability density functions for the category subsets. This is

Discriminant methods in general, and the Principal Dis- the major difference between the PDM and standard discrimi-

criminant Method (PDM) in particular, can be applied to nant analyses. In effect, it allows for irregular distribution of

forecasting problems in which it is desired to forecast a dis- prediction data that consequently do not fit well-known pdf's,
crete state of the atmosphere or ocean. An example is the these pdf's being the heart of any discriminant method.
forecasting of seasonal temperatures as one of the three dis- Another unique feature of the PDM is that of self-
crete states "above average," "average," or "below average." evaluation of predictive skill. This is supplied by three indices

Because of its underlying discriminant nature the PDM can of skill: the potential predictability, the potential 0-class error

also be used in data classification. An exzmple is the assign- and the potential I-class error in the predictand categories.
ment of the observed state of the atmosphere to one of several These indices along with their critical values, supplied by a
discrete "climate types." A further application of the PDM is Monte Carlo technique, help the user to decide how much
the linking of the output of a general circulation model confidence to place on a given prediction made by the PDM.

(GCM) of the atmosphere with observed fields in order to Also, during the construction of the PDM's working parts,

produce model-output statistic (MOS) schemes of prediction. provision is made to test the method on an independent data
Our description of the PDM shows its essential form, so as to set. This testing gives another indication of how well a data set
facilitate applications to any of the problems just mentioned. is constituted to allow predictions of its variables' future

The successful construction of category subsets in a multidi- states.

mensional predictor space is a sine qua non of any discrimi- The expositioni of the PDM, which is the main goal of this

nant method, along with the fitting of versatile probability paper, will be made in two parts. The first part (section 2)

density function (pdf's) to these subsets. The modifier "prin- treats the case of a single predictor, in which case the PDM

cipal" in the name of the present method derives from the fact reduces to a classical discriminant method. In real appli-

that for multiple predictors, essential use is made of principal cations the single-predictor mode can yield much information
about the potential predictability of a predictand by a givencomponent analysis (PCA) in order to determine appropriate pricoangwtsmenfmtonbuthekllfte
predictor, along with some information about the skill of the

'Deceased September 16, 1986. predictions. The single-predictor mode of the PDM can there-
fore stand as an independent, preliminary prediction method.

Copyright 1988 by the American Geophysical Union. The second part (section 3) treats the case of multiple predic-

Paper number 8D0169. tors. It is expected that the predictability will increase when a
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2- a might be the sea surface temperature (k = 1), the sea level

6 O[ same spatial location, and a particular predictand Y'(j) might
X€ -1 -be the horizontal visibility at the same timej and at the same-,- or a different location.

In order to use the predictive capabilities of the PDM, we
introduce a time lag T into Y'(j), so as to pair Y'(j + T) with

b X(j, k), r t 0. For simplicity it will be assumed that T has been
5. ] . .. introduced into Y'(j), and we will retain the notation X(j, k)

2 ------------ and Y'(j) for the lagged predictor-predictand pair, where now
j = 1, 2,-, N labels the common ranges of times of the
lagged pair. Hereafter it will be assumed that each predictor-

predictand datum pair is statistically independent from other

3 - . *e * C members of the data set. This condition can be tested and the1t original data suitably redefined to ensure independence if nec-
2* * essary. Several of the methods to be discussed later require
I 1this property of the data.

-- I - - I I I I I I I T - 1_ I 7 - - - - - -

1 3 5 7 9 11 13 I 17 19 21 2.2. Q-tiling the Predictand

TIME,j Divide the range of predictand values { Y'(j): j = 1, .. , N}

Fig. 1. Illustration of a predictor-predictand pair and a tercilc into Q intervals. By judicious choice of the boundary values
categorization. (a) A standardized predictor time series X(j, k), j = 1, B 1 , B, , Be - , between thes intervals, we can "Q-tile" the
.... N = 21, where k is fixed. (b) The corresponding time senes of the predictand Y'(j) into Q discrete categories. Let Y(j) denote the
predictand values, Y'(j); boundary values B, and R2 are indicated. (c) value of the discrete category to which Y'(j) belongs; thus
The terciled values of the predictand, Y(O) Y(j) = q if Y'(j) falls into category q, 1 < q < Q. Figure 1

illustrates these ideas for the case of Q = 3, called a "tercile

the category subsets in the resultant multidimensional predic- categorization." In Figure I we define Y(j) as follows:

tor space can be carved out of the swarm of data points there. YU) - I if Y'0J < B
It is in this mode that the PDM realizes its full power, via its
application of principal component analysis to the multidi- Y(j) m 2 if B, < Y'(J) < B2
mensional swarm of data points. Y(j) _= 3 if B 2 < Y'()

Section 4 discusses the results of using the PDM in various
forecast situations. This rather brief discussion is intended to for j =, .. , N. There is no requirement that the boundary
highlight some of the strengths and weaknesses of the PDM, a values be equally spaced or that the Q categories be equally
goal in concert with the theoretical nature of the rest of the populated after the Q-tiling of the predictand.
paper.

This paper is a condensation of a technical memorandum
[Preisendorfer et al. 1987], which can be consulted for a more 2.3. The Discriminant Set

detailed presentation, especially of the results discussed in sec- The time series for the kth predictor X(j, k) (Figure la) and
tion 4. The reader desiring an elementary discussion of dis- the Q-tiled predictand Y(j) (Figure lc) can be combined to
criminant analysis in its conventional statistical formulation is form a single diagram, called the discriminant diagram. Figure
referred to Lachenbruch [1975]. Applications of the discrimi- 2 shows the discriminant diagram corresponding to Figure 1.
n.;nt method in climate forecasting are given by Harnack et al. In this example one sees at a glance that large, positive predic-
[1985]. For a discussion of principal component analysis, see tor values tend to be associated with terciled predictand
Preisendorfer [1988]. values in category 1, predictor values near zero are associated

with category 2 predictand values, and large, negative predic-
tor values tend to correspond to predictand values in category

2. THE StNGLE-PREDIcmiR STAGE 3. The discriminant set consists of the N points [X(j, k), Y(j)J,
It is assumed that we have available a data set consisting of j = I, 2, .., N.

simultaneous observations of both predictors and predictands.
Such a data set is required in order to construct the PDM
model. After the model has been constructed, it is capable of
making forecasts when given new predictor values. 3-* *

2.1. The Predictor-Predictand Pair 0

Let X(j, k) denote the value of the kth predictor X at timej.

It is convenient to standardize the predictor in time, so that -2 1 0 1
the time series X j, k), - 1, 2, ..., No, has zro mean and
unit variance for each k, k - 1, Z --, K. Let Y'(J) denote the X (j, k)

value of the predictand Y' at the same time J. For example, in Fig. 2. The discriminant diagram corresponding to Figure la and
a model-output statistic setting, the various predictors X(J, k) Figure Ic, where k is held fixed asj runs from I to N = 21.
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2.4. Training and Testing Sets 1.0-

The discriminant set of N points is randomly split into two
subsets of predetermined sizes, N,. and N. The subset con- 0 , (X): 0b2 (X) 01 (X)
taining N,, points is the training set, and the subset containing 0.5-
N,, points is the testing set. Typically, we choose N, = 2N,,,
so that two thirds of the N available data points can be used
to "train," or to construct, the PDM; one third of the points 0.0,
can be used to "test," or to score, the PDM. Figure 3 shows a -2 -1 1 2
possible partition of the points of Figure 2 into training and
testing sets. Let X,,(i, k), i = 1, 2, ..., N,,, denote those values X
of X(j, k) which fall into the training set. Likewise, let Y(i), Fig. 4. The pdf's 0,(X), 0 2(X), and 0 3(X) for the category subsets of
i = 1, ' --, N,,, denote the corresponding values of Y(j). Those Figure 3a.
points of the discriminant set which have been randomly as-
signed to the testing set are denoted by [X,,(i, k), Y(Q], i = 1,
2. .., N,,. In order to fully utilize the training-testing set category q is

partition philosophy, it is necessary that the "training" data be (X 2
statistically independent from the "testing" data. This is a O(X) = (2nlaq 2) -

1
/

2 ex- 2
- - 2

critical factor in our procedure, and henceforth we assume 2
that independence has been established (compare section 2.1). where 9. is the average over i of the qth category {C(i): i 1,

2.5. Category Subsets of Predictor .., M.) and aq2 is the variance of this set of points.

Space Note that although the original data set X(j, k), j = i.
N, was standardized to zero mean and unit variance, the cat-

The subset of predictor points in the training set which is egory subsets Cq in general have nonzero means and nonunit
associated with category q of predictand values is termed the variances. Figure 4 shows the fitted Gaussian pdrs, 0,(X),
qth category subset of the predictor space, denoted by C, 2(X), and 3 M(X), for the category subsets of Figure 3a. Once
q = 1, 2, .", Q, whose elements are CQi), i = 1, 2, -", Mq. the 0q(X), q = 1, ..', Q, have been determined, the construc-
Figure 3 shows the three category subsets for the illustrated tion (or training) of the single-predictor PDM model is com-
training set: C, with M, = 3, C2 with M 2 = 6, and C3 with plete. Observe that implicit in the ckq(X) is the fact that they
M 3 = 5. The category subsets form the heart of the discrimi- were constructed for a particular realization of the training
nant structure of the PDM. set. A different partition of the discriminant set into training

and testing sets would yield somewhat different 0q(X) func-
2.6. Fitting the Probability Density tions.
Functions

Once the category subsets of predictor points have been 2.7. Making a Prediction
obtained, any discriminant method, including the PDM, re- Suppose a new predictor realization X' occurs for predictor
quires the fitting of probability density functions to these cat- k; i.e., X' = X(j, k) for some time j. We wish to use the PDM
egory subsets. A decisive point in the discriminant method can model constructed earlier in order to make a predictand fore-
arise when choosing the specific form of the probability den- cast for the new predictor value X'. Various strategies can be
sity function to be fitted to the category subsets. We choose adopted regarding the manner in which the pdrs ,(X) are
the Gaussian distribution for this exposition, although it may employed in making a forecast. Two of the more obvious are
be worthwhile in other applications to use a pdf specifically discussed in the following subsections.
tailored to a given data set. The form of the Gaussian pdf for 2.7.1. Maximum probability strategy. Given a predictor

value X', wc compute 0,(X) for each category q = 1, ".., Q
and note which q value, call it q', has the maximum pdf value.

----------------- ,N, = 14 The prediction is then that Y(1j = q'. In Figure 4 we see, for3-1 -0 * _to C3
;=Z==== ---------.- example, that X'- -0.5 would yield a prediction of Y in

>: 2-I t* "" " " *, a categry 3, X' -- 0.0 would predict Y--2Z and so on.

2.7.2. Bayesian strategy. The maximum probability strat-
_2 -------- Iegy is easily interpreted and computationally simple; however,

-2 -t 0 t 2 it may not make the best use of the available information. Themethod of Bayesian inference is perhaps better suited to the

problem at hand.
1* N. =7 Strictly speaking, the O(X) pdrs relate to conditional prob-

2- • " " b abilities: namely, O(X) gives the pdf of X, given that category
0 M /q is observed. To fix this idea, let us write O(X I q) -,#X).

1-1 0 What we really need in order to make a forecast is the prob-

-2 -1 0 I 2 ability that category q occurs, given that a specific value of X
2 occurs; let us denote this by P(q I X). The category, call it q',

X0 M I) with the greatest probability P(q I X) for the given value of
Filg. 3. A pertitioning of the diimninat set shown in Figure 2 X = X' is then the category forecasted by the PDM when X'

into (a) a training set and (b) a testing set. The category mubsets of the is observed. Since the Q predictand categories are mutually
training se are indicated. exclusive and exhaustive, Bayes' theorem (see, for example,

- . *i .- ,- ,., 7 .
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Box and Tiao [1972, p. 10]) Note that

aQ
P(q I X) = P(X I qWP(q P(X I q)P(q) Y P'(i, q) = I

q q I

=a T' If the pdf's are identical, P'(i, q) = l/Q. Thus a measure of how
p(X I q)PWq X I q)P(q) far the pdf's are from being identical is

can be used to obtain the desired P(q IX) values. Here P(X I q)p, ) 2
is the probability of X given q, which is just O(X Iq). P(q), qli Q J
known as the a priori probability of category q occurring, lies
at the heart of Bayesian inference. P(q) is a measure of our Moreover, if the pdrs are perfectly separated, then

knowledge about what forecast category will occur before the Q 2

predictor value X is obtained. The selection of appropriate X P'(i, q) -

P(q) values is a task which falls on the user of the Bayesian '~'

strategy and is an extra computation above those required for ( 1)2 + 0 - + ... + 0 2

the maximum probability strategy.
If we were making a random forecast of Y(j), it would be

reasonable (but not necessary) to make the probability of ran- where the first term on the right-hand side of the equation

domly choosing category q proportional to the number of results from the single occurrence of P'(i, q) = 1, in the sum,

points of the training set which fall in category q. So a reason- and the remaining terms on the right-hand side, Q - I in

able choice of P(q) is number, result from P'(i, q) = 0. Therefore

Q [P'(i q) - 2  - 1
P(q) -N" q = 1, -" Q= q)--Q--

It should be understood that in making this choice of P(q) we Thus we are led to define

are allowing information about the relative distribution of Q (122
points in the category subsets to influence the PDM's forecast PP(i) - P'(i, q) - 1
of the predictand when given a new predictor value X'. This is Q- I

the whole point of the Bayesian strategy. Another choice of Clearly, PP(i) = I if the pdf's are perfectly separated and
P(q) could lead to an entirely different forecast being made for PP(i) = 0 if the pdf's are identical. Finally, we define the po-
the same X' value. If we wish to make no use of our knowl- tential predictability, PP, as
edge about the distribution of points in the category subsets, I XI,
we can pick P(q) = I/Q for all q. This is the case of equally pp - Y PP(i)
likely a priori distributions, for which the Bayesian strategy N i
reduces to the maximum probability strategy. Thus PP has the property 0 : PP < 1 and is a measure of

how distinct the pdrs are: PP approaches zero as the pdf's

2.8. Potential Predictability become identical (and our confidence in a prediction de-
creases), and PP approaches I as the pdfrs become widely

The PDM as it now stands is ready to make predictions by separated (and our confidence in a prediction increases). This
whichever strategy is chosen in the previous paragraph. How- definition for PP is consistent with the choice of the maximum
ever, it is of great interest also to compute some measure of probability strategy for making a forecast, as discussed in
confidence in these predictions, i.e., to ascertain the expected 2.7.1. If the Bayesian strategy of section 2.7.2 is chosen, the
forecast skill of the PDM. When the pdf's OJX) are not well definition must be modified slightly by using
separated, then the predictions have low skill, no matter what
prediction strategy we choose. Note, for example, in Figure 4 P'(i. q) - P[q I X = X,,(i, k)]

that for predictor values X' near 0.5 it is nearly equally prob- f2 -

able that the predictand is in category I or 2, if we use the = 4[Xf,(i, k)]P(q)f 0 4q[Xi, k)]P(q)l
maximum probability strategy. Conversely, if the 0,(X) are l

well separated, then the PDM has no difficulty in determining which reduces to the previous definition of P'(i, q) if the a
which pdf has the maximum value for a given X', and we have priori distrib'itions P(q) are chosen to be equally likely, i.e.,
greater confidence that the predictions will be correct. There- P(q) = I/Q.
fore a measure of our confidence in the predictions can be PP is implicitly indexed by k for the particular predictor
obtained via a measure of how well separated are the pdf's. X(j, k) in question. Moreover, PP depends on the particular
One measure of this separation is given by the potential pre- partition of the discriminant set into training and testing sets.
dictability index (PP). Note that this index is distinctly differ- Thus one should make several (say (1) random partitions of
ent from prior uses of 'potential predictability" in the litera- the discriminant set and compute PP for each. Then, in the
ture, for example, Madden and Shea [1978]. final tally the average PP (AVGPP) over all partitions should

First define be taken:

(i, q) a #,X.(i, k)] * ,,I, k)J 3 AVGPP(k) = PP(k, co)

for i - ,, N,, where q 1 1, .. Q, and k is held fixed. where we now explicitly show the predictor (k) and partition

%4- .- A4jJWX-



10,820 PREMsENDOR Er AL.: PIUNCIPAL DISCIINANT METHOD

1-class error score. Then define could be used in place of the simple correlation described
So0aeearlier to affect the ranking. Similarly, a redefinition of the

a . [number of O-class errors] predictors in terms of their principal components and subse-
quent ranking by eigenvalue size represents a very different

I approach to predictor ordering (compare section 4.2). What-
a, - [number of 1-class errorsJ ever method one uses, it is necessary to avoid a large predictor

clearly, a0 and a, satisfy pool or risk the chance of obtaining false results.

0 : ao 5 1 3. THE M ULTIPLEt-PKEDICTOR STAGE

After performing the single-predictor, ordinary discriminant
analyses of section 2 on each predictor X(j, k), k = I, ..., K,

The larger ao is, the better the PDM has forecasted the testing we have, for a fixed predictand Y(J), a set of predictors or-
set values, and the smaller a, is, the better the PDM has dered by their potential predictability scores. We drop from
performed. Unlike PP, J0 , and d1 , which are based on the further consideration any predictors which did not have statis-
fitted pdf's defining the PDM model, a, and a, are actual tically significant PP scores in the single-predictor stage, so
forecast scores made by the PDM when applied to an inde- that K, < K predictors remain. V now turn our attention to
pendent testing set. Our studies of the PDM in section 4 will the task of constructing the PDM model in its multivariate
make use of the training and testing sets in the manner just setting.
discussed: the PDM will be defined using the training set, and We choose the predictor with the highest potential predicta-
its performance will then be evaluated using the testing set. bility score as the first predictor to be included in the multiple-
The ao and a, scores are a convenient means of presenting predictor PDM model. We then must screen the remaining
forecast skill when discrete forecast categories are used. (See, K, - I predictors in order to select those which, when com-
for example, Preisendorfer and Mobley [1984] for the use of ao bined with the first predictor, yield a multiple-predictor model
and a, in scoring seasonal climate forecasts.) which is, in some sense, optimum.

2.11. Significance Tests for Class Errors 3.1. Correlational Screening of Predictors

The Monte Carlo procedure, used in section 2.9 to deter- Suppose we have already selected L - 1 predictors, L = 2,
mine the 5% critical value for potential predictability, is ---. K, - I. Let these selected predictors be X(j, 1), 1 = 1, ...,
equally applicable to the determination of critical values for L - 1. Let the remaining set of unselected predictors be denot-
do, di, ao, and a. For each of the 100 realizations of the ed by W(j, u), u = 1, --', U; U + L- I = K,. Let p[u, 1]
random data set R, we can compute do and d, from the associ- denote the correlation between the indicated predictors. The
ated training set, and we can compute ao and a, scores from number
the associated testing set. We then determine the 5% upper pm.JU) M Max I pu, } I 1 = 1, L - I
critical levels, ao(96) and ao(96), and the 5% lower critical
values, d,(05) and a,(05). Significantly good predictions will is a measure of the distance between the uth unselected predic-
have do and a. scores that equal or exceed do(96) and ao(96), tor W(j, u) and the set of L - I previously selected predictors
respectively. Significantly good predictions will have d, and a, X(j, ). The larger p,.,(u) is, the closer W(j, u) is to {X(j, I),

scores that equal or are less than dl(05) and a,(05), respec- I = I, --, L - l} as a whole.
tively. Note that when more than one predictor is considered When choosing a new candidate predictor for addition to
(section 3.1), estimation of significance level becomes more the previously selected predictors, we choose that predictor
complicated. W(j, u) which has the minimum correlation magnitude,

p,,*(u). In so doing, we are selecting that predictor which is
2.12. Ranking and Screening Single least correlated with the existing predictors and therefore most
Predictors likely to add new information to the model. If u' is the value of

The net result of this section is the ability to individually u giving the minimum p_,(u), then we set X(j, L) = W(j, u'),
rank (for a given predictand Y(j)) the predictors X(j, k), k = 1, j = t, -.. , N. This correlational screening is the first step in
..., K, in terms of their PP, ao, d,, ao, and a, scores. Those choosing the Lth predictor. Whether or not this candidate

predictors that have significant potential predictability and predictor is retained in the PDM model will depend on its
class-error scores become candidates for further consideration effect on the PP, do, and d, scores, to be discussed in section
in the multiple-predictor stage. Predictors that have non- 3.9.
significant scores as single-predictors of a predictand are un-
likely to add useful information if they are combined with 3.2. The L-Dimensional Discriminant Set

other predictors in the multiple-predictor stage, and they and Related Subsets

therefore can be dropped from further consideration. It is im- Having added a candidate Lth predictor, we now have a set
portant to remember here that as one considers more and of L predictors which at each timej form a vector X(J) [X(j,
more predictors, the probability of finding an apparently 1), X(j, 2), -.. , X(j, L)) in euclidean L-space E, As the time
-good one" by chance increases. In fact, if one considers K index j varies, X(j) moves about in EL, The category-valued
different predictors, then an appropriate 5% critical level for predictand Y(.) concurrently changes with j. The set of all
any single predictor is (0.0 5)f. Parsimony is obviously called ordered pairs [X(j), Y(j)], j = 1, ... , N, constitutes the L-
for in the original definition of the predictor pool. dimensional discriminant set.

There are obviously other methods of ranking the predic- The L-dimensional discriminant set is randomly split into
tors than those outlined here. Multiple-correlation analysis two parts, exactly as in section 2.4. The result is a set of
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(w) indices. When comparing two possible predictors for a 2.10.1. Potential errors: do and il. Recall the probabil-
given predictand, the one with the higher AVGPP will repre- ities P'(i, q), which were defined when developing the PP index
sent the higher predictability, on average. (using either the maximum probability or Bayesian strategies).

For each i value, find the maximum of the Q probabilities,
2.9. Monte Carlo Significance Test for P {P'(i, q): q = 1, .- , Q} and let q'(i) be the q value for which

P'(i, q) is a maximum. We now define the potential 0-class
While one predictor may have a higher potential predicta- error as

bility than another, for a given predictand, it is possible that
neither is significant in the statistical sense. This possibility do- [i, q'(i)]
can be tested via a Monte Carlo approach. Let a random N [ )
number generator choose a class q at each time j; define a new
array R(j) = q, j = 1, ... , N, and replace Y by R (a random Note that as the pdf's 4,(X) become well separated, P'[i, q'(i)],
version of Y). The probability of randomly assigning a partic- and consequently do, approach 1. As the pdf's become identi-
ular q value to R(j) should be made proportional to the rela- cal, P[i, q'(j] and do approach P(q'), which for the Bayesian
tive frequency of occurrence of the qth category in the Q-tiling case is I/Q. Therefore d o is another measure, based on the
of the original data set, so that the Monte Carlo test will pdf's O€(X), of how confidently we can expect the PDM to
simulate as closely as possible the real experiment, make a correct category forecast.

We can now use the given predictor set X(j, k) and the But even if the PDM makes an incorrect forecast, it is
newly defined random predictand R(j) to produce training clearly better to have a forecast that misses by only one cat-
and testing sets, as in section 2.4, and to carry through all the egory than to have a forecast that misses by two or more
subsequent steps to obtain a value of PP. This entire process categories. For example, if category I is observed, a forecast of
can then be repeated, after generating a new realization of the category 2 is closer to the truth than is a forecast of category
random predictand R, to obtain another value of PP for a 3. Thus it is useful to have a measure of how likely it is that
random relation between predictor and predictand. This pro- the PDM will err by only one category, if it indeed makes an

r cess can be repeated to generate, say, 100 values of PP for incorrect forecast. Toward this end, we define
random predictor-predictand connections. These 100 values
can be ordered from smallest to largest; call them PP(l) for Ai, 1) a 0
the smallest to PP(100) for the largest. The 5% critical value 1(i, 2) P'(i, 1)
for PP is then determined from the ninety-sixth smallest PP
value, PP(96). Thus the probability that a randomly produced P(i, 3) P'(i, 2)
PP value will equal or exceed PP(96) is approximately 0.05.
Therefore if the PP value determined for the actual predictor-
predictand pair satisfies PP z PP(96), we will say that PP is (i, Q + I) P'(i, Q)
significant at the 5% level. Ai, Q + 2) 0

If one wants to establish a critical value for AVGPP(k), then
the Monte Carlo simulation is conducted so as to mimic the The idea here is to have P'[i, q'(i) - 1] = 0 if q'(i) - I and
generation of AVGPP(k), as described in section 2.8. Thus one Ff1, q'(i) + 1) 0 if q'(i) Q. Then define
randomly produces 0 realizations of PP(k, w), finds their
average, and goes through this average-finding procedure 100 1 N ,

times in all. The ninety-sixth smallest randomly generated at- Y 1{5[i, q'(i)] + P[i, q'(i) + 2]}
AVGPP value then gives the 5% critical value for AVGPP. 2 N, ,=

We note also that there are other measures of separation of A moment's reflection shows that d, is a measure of the prob-
the category swarms. For example, Hotelling's T 2 test (the ability that a category one less or one greater than the correct
multivariate generalization of Student's t test) can be used to forecast category will be selected, if indeed the q'(i) value gives
test the significant separation of a pair of category means ,r'q a false forecast. As the pdf's 4,(X) become well separated, d,
However, such tests often depend on assumptions of normality approaches 0; as the pdf's become identical, a, approaches
or independence of events. The potential predictability mea- I/Q. Thus we have
sure of separation was developed in an attempt to have a
nonparametric test. 1

0< !5 a !5

2.10. Class Errors

The potential predictability gives us one measure of how The larger do is, the better X(j, k) may predict Y(j), and the
well a particular predictor can be expected to forecast predic- smaller d, is, the better X(j, k) may predict Y(j.
tand values. Another straightforward indicator of how well a 2.10.2. Actual errors: a o and a,. After the PDM has been
prediction method is doing, when predicting categories, is to constructed, or trained, using the training set [X,,(i, k), Y(1)],
count the number of predictions that are correct (0-class we can apply the PDM to the testing set predictors, X,(i, k),
errors) and the number of predictions that are off by one and can verify the predictions it makes against the actual
category (1-class errors). In the PDM we shall do this two observations for the testing set, YO. It is again crucial that
ways: we will determine the potential 0- and 1-class errors, 4 o the members of the testing set be statistically independent
and d, respectively, using the training set, and we will deter- from the training set. Each time the PDM makes a correct
mine the actual 0- and 1-class errors, ao and a, using the forecast, we tally one to the 0-class error score, and each time
testing set. the PDM forecast errs by one category, we tally one to the

-. , , ., ,
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L-component vectors X.(i), i= 1, , N,, containing those 3
elements of X(J) randomly failing into the training set, and
another set of vectors X,,(i), i = 1, "., N,,, containing the
remaining elements of X(j). The associated sets of predictands 2
YJ) and Y,(j) are defined just as before.

We can now define subsets of EL, the setting of the predictor
space, that are associated with each of the Q predictand cate- N 1
gories. The logic of this definition is the same as that of sec- 04
tion 2.5. Thus we set C,(i) = X.(i) if Y(i) = q; the number of 0 0
points tallied to CQ is Mr

It is to the subsets C q = 1, .,Q,of EL that we will -
eventually fit L-dimensional probability density functions. -1
However, before fitting the pdf's, we perform a preliminary
analysis of the L-dimensional category subsets using principal
component analysis (PCA). It is in this application of PCA -2
that the PDM parts company with classical discriminant
analysis.

3.3. Binary PCA Decomposition of Category -3 -2 -1 0 1 2 3
Subsets PREDICTOR I

Let us consider, for didactic purposes, the case of two pre-
dictors (L = 2) and a terciled predictand (Q = 3). Figure 5 Fig. 6. The category 2 point swarm of Figure 5 and the probability

shows three swarms of (artificially generated) points in E2, contours of the best fit bivariate normal pdf.

representing the three category subsets. In classical discrimi-
nant analysis, each category subset would be fitted with a having pdf's which accurately delineate the category subsets,
bivariate normal pdf. For a point swarm shaped like that of we could not expect accurate forecasts from a model based on
category 2, the bivariate normal pdf would probably be quite fits as poor as that of Figure 7, and standard discriminant
satisfactory; Figure 6 shows the category 2 swarm and the analysis will fail.
best fit binormal pdf. However, for an irregularly shaped Principal component analysis enables us to systematically
swarm, such as category I of Figure 5, the bivariate normal and objectively subdivide an arbitrarily shaped category
pdf is clearly a poor representation of the actual shape of the swarm into a number of smaller point swarms in EL. If each of
category subsets. Figure 7 shows the best fit bivariate normal the smaller swarms is then roughly elliptical in shape (in terms
pdf for category 1. Since discriminant methods depend upon of hyperellipses in EL), then a multinormal pdf can be well

fitted to each smaller swarm. The critical need for parsimony
in this subdivision process should be kept in mind as the

0 reader proceeds through the next several sections. The pdf
describing the original, irregularly shaped category swarm can

3
3

2 000 °  2 -

0 000

00

00

-2

I -3 -2 -1 0 1 2 3
-3 - 2 -1 0 1 2 3

PREDICTOR 1
Fig. 5. An illustration of three category swarms C1, (pluses; PREDICTOR 1

M 99 points), C. (triangles; M2  89), and C3 (circles; M3 , 112) Fig. 7. The category I point swarm of Figure 5 and the probability
in E2. contours of the best fit bivariate normal pdf.

. . . ._ _ ,m m. -. ,;/., .,.
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both computationally expensive and overly strenuous, in the 3
sense that category swarms are subdivided just because they
are nonspherical. Swarms can deviate greatly from a spherical
shape and can still be adequately fit by a multivariate normal 2
pdf; it is the sinuous shapes (compare Figure 8) and multimo-
dal (or clustered) point swarms that need to be decomposed.

3.4.2. Strategy 2. One simple way to terminate the PCA 
subdivision process is to simply force all initial category o
swarms X. to undergo a fixed number of subdivisions, say, to E'4
level 2, as shown in Figure 9. This procedure seems to work
fairly well in practice, although it should not be applied blind-
ly. For instance, the category 2 swarm of Figure 5, which was -1
nearly spherical to begin with, seems little distorted by decom- 1'
posing it into, say. the four subswarms of a level 2 decompo-
sition. If X¢ is sinuous, as are categories I and 3 of Figure 5, -2
then a level 2 decomposition goes a long way toward gener-
ating a reasonable resolution of the original swarm, but with-
out getting too near the noise level. -33 -2 -1 0

3.4.3. Strategy 3. It is the sinuous shape of the data dis-

tribution that causes the poor definition of pdf's and hence the PREDICTOR I
need for PDM subdivision. Thus we can envision measures of
thelskewness and kurtosis of the data swarms that could be Fig. 10. The category I point swarm of Figure 5 and the probability

used to decide if partitioning is required. It is clear that such contours ofd),(X), as determined by a level 2 PCA decomposition.

higher-moment measures of the data swarm will have to be
able to discern category 1 (Figure 5) distributions from ellip- function W(t) = N,(t)/M,, so that
tical distributions, since the latter are well represented by mul- NT,
tidimensional Gaussians. We will not pursue such measures W =

here.

3.5. Fitting pdf's to the Terminal Nodes The probability distribution function for the qth category

Let us suppose that the qth category subset X. has been subset is then taken to be
dcomposed into a number of terminal nodes X¢(ot, ... , a.). NT,

Let T,(t) denote the tth terminal node X,(at', .) of X5, and OD(X) W

let NT. be the number of terminal nodes of X; t = 1, 2, .- ,

NT. Thus NT = 1 for the case of no decomposition of the for q = 1, ., Q and X in EL. These pdf's 05(X) define the
original category subset, NT = 4 for a level 2 decomposition desired PDM model.

like that of Figures 8 and 9, and so on. Let Nq(t) denote the Figure 7 showed the binormal pdf for the category I point

number of points Nq(c, ., .) in the tth terminal node; swarm of Figure 5; this is the case of NT = I, or no PCA
decomposition of the category set. Figure 10 shows the con-

N NT(. ) = M4  tours of 0 1(X) when determined by a level 2 decomposition, as
I- illustrated in Figures 8 and 9 and discussed in section 3.4.2.

This pdf is clearly a much more realistic description of the
The centroid of T(t) is located at (t). Finally, let S(t) category swarm than is the pdf of Figure 7. If the PCA
L x L covariane matrix of T(t), with determinant II S5(t) I decomposition is allowed to proceed until just before the mini-
and inverse S, - '(t). mum point requirement N(t) > L is violated, the category I

The best fit multivariate normal pdf for the ith terminal point swarm of Figure 5 is reduced to 23 terminal nodes.
node T4(t) is then Figure I I shows the tree diagram of this maximum possible

0(t, X) - (2x)-L/2(I S(t) I) - 
/2 decomposition. Figure 12 shows the 0,(X) contours deter-

mined from the terminal nodes of Figure 11. This pdf gives a
exp {-0.5[X - T't)]TS, - 1(t)[XS-5 Tt)fl very sharp delineation of the category subset, but the fine

(It is assumed that II S(t) I1 # 0, so that S, - '(t) exists; if this is structure of the probability contours is clearly being deter-

not the case, the PCA decomposition leading to this terminal mined by twe individual points of the category subset, which
node is not made, and the parent swarm is declared terminal.) may be undesirable, as discussed in section 3.4.

X is an arbitrary point in EL. Sq- 1(t) is readily obtained from
the eigenvalues and eigenvectors obtained in the PCA of T4(t),
namely, Just as in the single-predictor case, we must choose a pre-

diction strategy (maximum probability, Bayesian, or another)

Sq - (t) = (M. - 1) /. - .L r for using the pdrs O q) to make a prediction. If the maxi-

36 lAt mum probability strategy is chosen, then, given a new predic-
tor realization X' (now an L-dimensional vector), we evaluate

3.6. Assembling the pdf's 0V(X'), q = 1, .-. , Q. The prediction is then that the predic-
A multivariate normal pdf is fitted to each terminal node tand falls into category q', where q' is the q value correspond-

T(t) of Net) points, t = , "", NT. We define a weighting ing to the maximum @(X'), q = 1, Q. If the Bayesian
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Level 0

Laval 1 1 K1() 7: 1)

Lavel2 7 (2.2) 25 X_ . (2. 1) 21 X (1, 2) Z 0. 1)(

Leval 31

t- 1 2 3 4 5 6 7 8 9101112 13 14 15 16 171819 20 21 2223

Fig. 1I. The tree diagram showing the maximum possible decomposition of the category I subset of Figure 5. The
circles represent the X1(a I, "- ", ) subsets, and the numbers within the circles give the number of points in the subswarm,
N1 (al. • ", a). Terminal nodes T,(t)are represented by boxes; the enclosed numbers give N,(t).

strategy is chosen, the a priori probabilities can be set to The potential predictability is now measuring the separa-

P(q) - M,/N,, as in the single-predictor case, and the pdf's tion of pdf's in an L-dimensional space. Figures 13-15 show
(X) w O(X I q) are used in Bayes' formula. three sets of pdrs, as determined for the example point

swarms of Figure 5, where L = 2. Figure 13 (reproducing parts
3.8. Potential Predictability, Class of Figures 6 and 7) shows in superposition the contours of

Errors, and Significance Tests equal probability of the three best fit binormal pdf's, 6(X), as

These matters all proceed in exact analogy to the single- would be obtained in classical discriminant theory. The poten-

predictor case. Thus in computing the potential predictability tial predictability for these pdf's is PP = 0.39, when using the

index for the maximum probability strategy, we first compute maximum probability forecast strategy. Figure 14 shows the

(Q -, pdf's,(X), as obtained by level 2 PCA, as illustrated in

P'(i, q) = 0,[Xi)}] OJ[X.(i)] Figures 8-10. The eye can now easily distinguish the three
F pdf's determined from the three point swarms of Figure 5, and

for q = 1, , Q and i = 1," . N,. The only difference from the potential predictability has risen to PP = 0.77. Figure 15

the single-predictor case is that we are now using the L- shows the pdrs as determined from the maximum possible

dimensional training set values Xji) in the multivariate pdf's PCA decomposition of the category swarms, as shown in Fig-

*4(X). Subsequent formulas leading to PP or AVGPP are ures II and 12. These pdrs show even better separation, as

unchanged. Likewise. the modifications required for the
Bayesian strategy are trivial.

3

3
2

2-

0 0
0-

-2-2

-3 L3 -2 -1 0 1 2 3

-- 3 -2 -1 0 1 2 3 PREDICTORI

PREDICTOR 1 Fig. 13. Contours of equal probability of the three binormal pdf's

Fill. 12. The category I points of Figure Sand the 0,(X) probability "LoX), q - 1. 2, 3, fitting the three category subsets of Figure 5. The
contours, as consructed from the 23 terminal nodes of Figure 11. contour interval is different for each of *he three pdrs.

.......-4 .: ; ;, ;,IL'. ' ,
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+ might not be the best for another time lag. Indeed., for T = 0 or
r V1, predictor 5 has the highest PP of any single predictor,

+ +.. whereas for r = 2. 3. or 4, predictor 2 (Barnett's U2) has the

+ + + highest PP. However, for the present data set this dependence
+ + + + is weak: for T = 4, predictor 2 has PP = 0.336 and predictor 5

+ + + o+ has PP =0.316.

" I " ,However. when the various PDM models of Figures 17 and
0.9' A t11PIM,= TM) 18 were applied to the testing set, the performance of the

0.8--..Ar fuss Fnmk. Ma ?no PDM was quite disappointing. Indeed, the PDM's tercile cat-

07 )r (3qY . 1Awt 2 TWO egory forecasts failed even to show the presence of the 1982-
0-.-A - -- -- .- - 1983 El Niuo, let alone accurately predict its onset. Careful
0.6, investigation into the cause of the PDM's failure showed that

0.5- (Bakrn. L*%W 0 Tw ) the raw data are so noisy that the category swarms cannot be
* / ..-""7"- adequately distinguished: the points for the extreme categories

0.4- (M P". L,.d S TO.) I and 3 are nearly lost in the swarm of points for category 2.

0.3- The associated pdf's 0^(X are correspondingly overlapping; a

0.2- result anticipated in point 1, cited earlier. Given such data,
neither the PDM nor any similar technique can be expected to

0.1- 2 4 show any useable degree of forecast skill.

NUMBER OF PEDICTORS 4.2. Using Filtered Predictors
IN MODEL

If the poor performance of the PDM in the El Nihio forecastFig. 17. Potential predictability values for various PDM models i i
Itime lag r= 0. The solid curves are for the maximum probability is indeed due to noise in the data, then perhaps filtering or
forecast strategy, and the dashed curves are for the Bayesian strategy, smoothing the raw predictor values will increase the signal-to-
Dots are for no PCA decomposition of the category swarms (a level 0 noise ratio and thereby allow the PDM to extract the infor-
decomposition, equivalent to classical discriminant analysis), triangles mation needed to make its forecast. To investigate this possi-
are for a level 2 PCA decomposition, and squares identify the curves bility, a series of forecasts was made using two types of filters:
for which the maximum possible number of PCA decompositions was
performed. I. A seven-point running mean was applied to each pre-

dictor time series. Thus each predictor value X(j, k), k = I,
• ". K, was replaced by a smoothed value, X,{j, .) given by

3. All else being equal, PP increases as the number of PCA j3
decompositions of the category swarms increases. X,(j, k) - - Y X(j', k)

4. All else being equal, PP increases as more predictors are 7 j. 3-

added to the model. The 3 months at the beginning and end of the 476-month time
Similar results were found for d. and dt e.g.. d, decreases (the series were left unsmoothed. The PDM analysis then pro-
model becomes better) as predictors are added, all else being ceeded as before, but now using the X(j, k) as predictors.
equal, and so on. This behavior is consistent with our expecta- 2. As before, the training set X,, was selected to be the first
tions and with the high likelihood that much of the apparent N,, = 396 months of each of the K = 7 predictors. A PCA was
skill is artificial. then performed on the training set to get

Figure 18 shows the dependence of PP on the time lag r
between predictor and predictand, for the case of a Bayesian A = X,,. E
forecast strategy and a level 2 PCA decomposition of category where E - [el.... e] is the 7 x 7 matrix of empirical or-
swarms. We note that the PP scores decrease somewhat as r
increases from 0 to 4 months for the two predictor model, but thogonal functions pEOFsi and A [a , ...T a ] is thethat the PP cors ar reati ely ind pend nt f r for the 396 × 7 m atrix of principal com po nents. The principal co mn-
that the PP scores are relatively independent of for the ponent time series a, - Cas(I), "", a1(N,,)]rj = 1, "", K, were

ordered by the size of their associated eigenvalue and wereFigure 18 was generated for two-predictor and five- used as the predictors in training the PDM, rather than using
predictor models in which the particular predictors in theprdcrmodel s wereheldfined wichhe. p predictors5an6 in the the original X(j, k) as predictors (compare section 2.12). Since
model were held fixed (i.e., predictors 5 and 6 in the first case

and predictors 5. 6, 7, 2, and 4 in the second case). In general, the a, are orthogonal, we can do no further predictor ranking
we would expect that the best predictors for one time lag using correlations between predictors (compare section 3.1).The testing set X, was defined as before to be the predictors

£ from 1984f to 1986. However, before making a forecast using

0.6- the testing set, we replaced X,. by amplitudes A, defined by

0 .5-j ~ O (5 Proih~ma) A, X,. E
0where E is the EOF matrix of the training set. We thus per-0.4P i(2 I, mformed the same transformation on the training and testing
0.3- , i 4 sets, so that the A,, values can be used in the probability

0 t 3 distribution functions 0, of the PDM.
TIME LAO r, moeha A series of experiments was made to compare the forecasts

Fig. 18. PP scores for the two-predictor (solid circles) and five- made using the filtered predictors with the forecasts mode
predictor (open circles) PDM, as a function of time lag t. using the raw data. The Bayesian forecast strategy and a level
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1.0 We also note that scores like a. are overall measures of a
forecaster's performance over the time span of the testing set.

0.9- If we are interested only in forecasting the onset of an El
Nifio, then a low a. score does not necessarily imply poor
model performance, nor does a high a0 score imply success in

0.8 - , , m e the forecast.

Figure 20 shows the actual category forecasts made by the
• ' "smoothed two-predictor PDM model using a, and a. as pre-

0.7 " me am mom dictors. We see that the PDM forecasts are similar to that of
the Barnett model for small r: a rise to the above-normal

0.0 Rain Umn + PeA category, followed by a fall to the below-normal category. But
the PDM's longer-lead forecast missed the peak of the event

and also failed to predict the longevity of the warming. Thus
0. amud,, Mm. No PCA even though the preliminary PCA spatial filtering of the noisy

3 4 wind fields helped the model, it has not been able to extract

TIDE LAG , metl the same information from the original data set as did the
linear prediction model. In essence, the PP scores suggest that

Fig. 19. The a. scores for various two-predictor PDM models: there is so much variability between El Nifho events that the
solid circles, unfiltered predictors 5 and 6. diamonds, predictors 5 and requisite pdrs are poorly defined, and so the PDM should fail.
6 with a seven-point running mean. open circles, principal compo-
nents I and 2; squares, seven-point running mean, then PCA and Further, the 1982-1983 event was quite unusual for a variety
using principal components I and 2: triangles, persistence of the pre- of reasons and so may not fit well into the statistical structure
dictand values, determined from the training set. These problems withstand-

ing, we still should expect the PDM to fail in 1983 for the

same reason the linear prediction model failed [cf. Barnett,
2 decomposition of the category swarms were chosen. Figure 1984].
19 compares the ao scores of the various two-predictor In summary, the PDM did not perform particularly well on
models. We note first that the a, scores obtained after apply-
ing the seven-point running mean filter to predictors 5 and 6
are in fact lower than the scores obtained using unfiltered
predictors 5 and 6. However, if we perform a PCA and then
use principal components I and 2, the a. scores are generally 3-
higher than the scores of the unfiltered two-predictor model
out to T = 2. These results can be interpreted as follows. The 2-

running mean is a low-pass temporal filter which leaves a 0o 1t
low-frequency, but possibly still random, time series. The spa- 0 a
tial correlations between the predictor time series are rela- j Umu ith r= 4

tively unchanged by the temporal smoothing. The PCA oper- U -I-

ation, on the other hand, is a spatial filter, and the resulting b
time series a, contains spatially coherent information from all

of the original predictor regions. Time series a 2 also contains
spatially coherent information from all of the original predic- 3]) t*

tor regions, though of a spatial pattern which is distinct from 2C
that of a,. Thus merely filtering high-frequency noise from the
predictor time series does not improve the ao scores, whereas 31 r-1
using the spatially coherent signal from all of the original 2 2- d
predictor regions does lead to a better set of predictors a, and j
a. Figure 19 also shows that if we first apply the seven-point 3 r- 2

running mean to each of the original seven predictors and <

then perform a PCA on the smoothed time series, we get 2 e
greatly improved a0 scores for short time lags, although the ao

scores are degraded for longer time lap. This latter effect may 3] r- 3
simply be due to statistical uncertainty in the estimation of the 2 f
a.

For reference purposes, Figure 19 also shows the a. scores 3] r-4
obtained by persistence; that is, the observed category at time 2
j is used as the forecast for timej + z. (For T =0 , then, persist-/ g
ence uses the observed category to forecast itself and obtains a
perfect score of a o = I.) Since the SST anomaly categories, as 112 2 1983 1984
terciled, are quite persistent, persistence attains a high a0  TIME
score. In a similar fashion, climatology, which always forecasts
tercile category 2, attains a score of a. - 0.725 owing to the Fig. 20. Category forecasts made using principal components I
chosen terciling scheme. Neither persistence nor climatology and 2 (circles of Figure 19). (a) The actual SSI anomalies and the

forecast made by the Ramett model, with T = 4 months. (h) The ob-
can forecast the onset of an El Nifio, however, and thus are served tercile categories (a perfect forecast). Figures 20c-20g forecasts
not valid competitors in actual forecast situations, for time lap r, as shown.

i*
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-3
--- - 2---

1980 1 1981 1 1982 1 1983 1 1984 1 1985 1 1986 1

TIME

Fig. 16. The testing set for prediction of the 1983 El Nifio. The light curve and the scale at the right show the actual SST
anomalies. The heavy curve and the scale at the left show the corresponding tercile category values.

4. APPLICATION OF THE PDM Nifio. The 396 months from January 1947 to December 1979

This section is intended to show some of the strengths and were taken to be the training set, and the 80 months from
weaknesses of the PDM. Thus we show a forecast scenario in January 1980 to August 1986 were taken to be the testing set.
which the method does not do particularly well and one where The training set contains several El Nifios, so we thought that

it apparently does better than other conventional forecast the PDM should have a good opportunity to define the cat-

schemes. The first example is particularly illuminating, for egory pdf's. The 1982-1983 event stands out prominently in

there we intercompare results obtained using some of the dif- the testing set, as is seen in Figure 16. Furthermore, the testing

ferent strategies discussed earlier, thereby giving the reader a set is largely independent of the training set, although there is

feeling for the sensitivity of the PDM to the details of its substantial autocorrelation within each set (compare section

construction. Since this is essentially a theoretical paper, the 2.1 and section 2.4).

discussion of the applications is brief. Additional examples of The PDM was applied in various configurations:

the PDM in operation are given by Preisendorfer er al. [1987]. 1. Both maximum probability and Bayesian strategies
were used. In the Bayesian case the priors were made pro-
portional to the number of points in the category (compare

4.1. Forecasting the El Nito of 1982-1983 section 2.7).

Barnett [1984] addressed the problem of statistically fore- 2. Category swarms were forced to undergo a predeter-
casting sea surface temperature (SST) anomalies in the equa- mined number of PCA subdivisions, either zero (as seen in
torial Pacific using wind anomalies as predictors, during the Figure 13), 2 (as seen in Figure 14), or the maximum possible
1982-1983 El Nifo. That study used an advanced regression number (as seen in Figure 15), as discussed in section 3.4.
model which related the SST anomalies in the predictand re- 3. The potential predictability was used to measure the
gions to the prior wind anomalies in the predictor regions. separation of the category pdf's, although the 5% significance
The study showed, among other things, that it was possible to levels were computed only in the single-predictor cases (owing
forecast the onset of El Niflo, as measured by SST anomalies to computational expense).
in a region off the coast of Peru, using wind anomalies from 4. The individual predictors were rated by their potential
various regions in the central Pacific. These forecasts were predictability scores in order to select the first predictor. Sub-
successful at lead times of up to 4 months. Although the sequent predictors were added to the model in the order given
model did an acceptable job of forecasting the onset of the by the correlations, as described in section 3.1. Models con-
1982-1983 El Nifio, it failed to accurately predict the decline taining 1-7 predictors were compared.
of the El Nifio, for reasons discussed in the 1984 paper. It was For a time lag of r = 0, predictor 5 (wind in region V I) has

felt that a repetition of this study would be another means of the highest potential predictability score of any individual pre-

evaluating the PDM's forecast ability. dictor. If the maximum probability strategy is chosen, this

The data set consists of monthly wind and temperature value is PP = 0.196; the 5% significance level is
anomalies for the 476 months from January 1947 to August PP(96) = 0.019, so that PP is significant. For the Bayesian
1986. There are four regions of the equatorial Pacific for strategy, PP = 0.377 and PP(96) = 0.316, so that PP is once
which u-component (east-west) wind anomalies are available, again significant. Predictor 5 thus becomes the first predictor
and three regions for which there are v-component (north- of the PDM model. Predictor 6 (wind in region V2) is least
south) wind anomalies. Thus there are seven possible predic- correhrted with predictor 5, and therefore becomes the next
tors (labeled 1, ... , 7 and corresponding to Barnett's UI, U2, predictor added to the model. With two or more predictors in
U3, U4, VI, V2, and V3, respectively). The predictand SST the model, we also have the possibility of forecast skills de-
anomalies were terciled, so that only the extreme events would pending on the number of PCA decompositions of the cat-
fall outside the "normal" category. Inspection of the SST egory sets. Figure 17 shows the dependence of the potential
record shows that if boundaries B, = -0.5'C and B2 = 1.2*C predictability on the form of the PDM model. In Figure 17 we
are selected (see section 2.2), then slightly less than one sixth of note the following behavior of the potential predictability:
the anomalies fall into category I (below normal SST), some- 1. The relatively low initial PP values, while significant.
what more than two thirds fall into category 2 (normal SST), indicate that the category pdf's are not very distinct. We im-
and slightly less than one sixth fall into category 3 (above mediately expect that the PDM, as constituted for this prob-
normal SST). The above-normal category, so defined, contains lem, will not perform well.
only anomalies which are greater than two standard devi- 2. All else being equal, PP is greater for the Bayesian fore-
ations from the mean, which is a reasonable definition of El cast strategy than for the maximum probability strategy.

iF ".
I -
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3 levels on PP, do at, ao , and a, proceed, in principle, as before.
Now, however, when the randomly generated predictand R(i)
is analyzed using the multivariate predictors, it is necessary to

2 perform a full PCA decomposition in order to get the needed
pdf's (as described in sections 3.3 to 3.6). This PCA analysis
becomes prohibitively expensive when it must be repeated 100
times in a Monte Carlo experiment. Thus in practice, the 5%
significance levels may not be available.

0 0
F4U3.9. Final Screening of the Candidate

Predictor
- We recall from section 3.1 that we have admitted a candi-

date Lth predictor to the PDM model, based upon the corre-
-2 lation screening described there. We now may use the infor-

mation gathered in the previous paragraph to decide whether
or not to keep the candidate predictor in the model. Let d0(L

- .- 1) and d(L - 1) denote the do and d scores obtained from
-3 -2 -1 0 1 2 3 the PDM model before the candidate Lth predictor was ad-

mitted (if L = 2, we have the single predictor potential class
PREDICTOR 1 errors available). Let PP(L), do(L), and dl(L) be the scores

Fig. 14. Contours of equal probability of the three pdf's o,(), as obtained after the candidate Lth predictor was admitted.
determined from a level 2 PCA decomposition of each category Moreover, let PP(96; L), do(96; L), and d1(05; L) be the appro-
subset of Figure 5. Contour intervals vary. priate 5% critical values, as determined by Monte Carlo simu-

lations. We then accept the candidate Lth predictor, X(j, L),

verified by their PP value of PP = 0.87, but the noise in the into the PDM model, if the following conditions hold:

data (i.e., the positions of the individual points) has clearly Condition I
affected the pdrs themselves. If the pdf's of Figure 15 were
used for actual forecasting, it might often occur that predictor PP(L) > PP(96; L)

values X' would "fall into the gaps" of these irregularly shaped Condition 2
pdf's in such a manner as to cause the point to be ascribed to
the wrong pdf, thus giving an incorrect forecast. do(L) > do(L - 1) dl(L) < dj(L - 1)

Given the probabilities P'(i, q), the potential class errors ad Condition 3
and d, are immediately available. The actual class errors a,
and a, are now computed from the multipredictor testing set do(L) > do(96; L) dj(L) !g dj(05; L)

X,,(i), i = 1, ., N,,. If these three conditions are not satisfied, we delete the candi-
Monte Carlo experiments for determining 5% significance date predictor from the model and return to section 3.1 to

select the nrxt candidate predictor. We continue in this
manner until all possible predictors have been examined, at

3 which time the PDM model is complete.

Condition I is simply the requirement that the model have
Sa statistically significant potential predictability. Condition 2

2 - is the requirement that the addition of the Lth predictor im-

prove the potential class error scores, and condition 3 ex-

l presses the requirement that the model's potential class error
4scores be statistically significant. Conditions I and 3 can be
0 relaxed by using, say, a 10% significance level instead of the
1-4
U 0- 5% level shown. Condition 2 cannot be relaxed. For complete

rigor the critical level should decrease as the number of possi-
ble predictors is increased. This allows for the probability that
one of the predictors will, by shear chance, appear useful
(compare scction 2.12).

-2
3.10. Scoring the PDM Model

I I I i One the PDM model is complete, we can compute the
-3--3 -2 -1 0 1 2 3 actual class errors a o and a , using the testing set XJ, i - 1,

... , N, generated during the examination of the final predic-

PREDICTOR 1 tor which was admitted to the model. These a o and a, scores,

Fig. 15. Contours of equal probability of the three pdrs ,0), as together with the information shown in conditions 1, 2, and 3

determined from the maximum possible PCA decomposition of the in section 3.9, are the data by which we measure the PDM
category subsets of Figure 5. Contour intervals vary. model's actual and potential skills.

t5
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SFig. 23. Percentage a0 scores obtained from Monte Carlo experiments in which the category forecast was made at ".
random. The expected value is 33. The numbers in parentheses show the ao scores of the two-predictor PDM, from Figure y
22.

4. Forecasts were made ror winter at a lead tsme of one NA85AA-D-ACi132), in part by the U.S. Climate Program Office vti-''
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The results of the single-predictor experiments are shown in Pacific Marine Environmental Laboratory. Word processing was per-formed by Ryan Whitney and the figures were drawn by Gini Curl.
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